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1. Introduction

The multi–armed bandit (Robbins, 1952) elegantly
formalizes the problem of on–line learning with par-
tial feedback, which encompasses a large number of
real–world applications, such as clinical trials, online
advertisements, adaptive routing, and cognitive ra-
dio. In the stochastic multi–armed bandit model,
a learner chooses among several arms (e.g., different
treatments), each characterized by an independent re-
ward distribution (e.g., the treatment effectiveness).
At each point in time, the learner selects one arm
and receives a noisy reward observation from that arm
(e.g., the effect of the treatment on one patient). Given
a finite number of n rounds (e.g., patients involved in
the clinical trial), the learner faces a dilemma between
repeatedly exploring all arms and collecting reward in-
formation versus exploiting current reward estimates
by selecting the arm with the highest estimated re-
ward. Roughly speaking, the learning objective is to
solve this exploration–exploitation dilemma and ac-
cumulate as much reward as possible over n rounds.
In particular, multi–arm bandit literature typically fo-
cuses on the problem of finding a learning algorithm
capable of maximizing the expected cumulative reward
(i.e., the reward collected over n rounds averaged over
all possible observation realizations), thus implying
that the best arm returns the highest expected reward.
Nonetheless, in many practical problems, maximizing
the expected reward is not always the most desirable
objective. For instance, in clinical trials, the treatment
which works best on average might also have consid-
erable variability ; resulting in adverse side effects for
some patients. In this case, a treatment which is less
effective on average but consistently effective may be
preferable w.r.t. an effective but risky treatment. In
general, some application objectives require an effec-
tive trade–off between risk and reward.

A large part of decision–making theory focuses on
defining and managing risk (see e.g., (Gollier, 2001)
for an introduction to risk from an expected utility
theory perspective) and has mostly been studied in on–
line learning within the so–called expert advice setting

(i.e., adversarial full–information on–line learning). In
particular, (Even-Dar et al., 2006) showed that in gen-
eral, although it is possible to achieve a small regret
w.r.t. to the best expert in expectation, it is not possi-
ble to compete against the expert which best trades off
between average return and risk. On the other hand, it
is possible to define no–regret algorithms for simplified
measures of risk–return. (Warmuth & Kuzmin, 2006)
studied the case of pure risk minimization (notably
variance minimization) in an on-line setting where at
each step the learner is given a covariance matrix and
must choose a weight vector that minimizes the vari-
ance. The regret is then computed over horizon n and
compared to the fixed weights minimizing the vari-
ance in hindsight. In the multi–arm bandit domain,
the most interesting results are by (Audibert et al.,
2009) and (Salomon & Audibert, 2011). (Audibert
et al., 2009) introduced an analysis of the expected
regret and its distribution, revealing that an anytime
version of UCB (Auer et al., 2002) and UCB-V might
have large regret with some non-negligible probabil-
ity.1 This analysis is further extended by (Salomon
& Audibert, 2011) who derived negative results which
show no anytime algorithm can achieve a regret with
both a small expected regret and exponential tails. Al-
though these results represent an important step to-
wards the analysis of risk within bandit algorithms,
they are limited to the case where an algorithm’s cu-
mulative reward is compared to the reward obtained
by pulling the arm with the highest expectation.

In this preliminary paper, we focus on the problem of
competing against the arm with the best risk–return
trade–off. In particular, we refer to the most popular
measure of risk–return, the mean–variance model in-
troduced by Markowitz (1952). We formalize the prob-
lem, introduce a confidence–bound based algorithm,
discuss its properties, and finally report some prelimi-
nary results. We conclude the paper with a list of open
problems.

1Although the analysis is mostly directed to the pseudo–
regret, as commented in Remark 2 at page 23 of (Audibert
et al., 2009), it can be extended to the true regret.



Risk–averse Bandits

2. The Mean–Variance Bandit Problem

We consider the standard multi–arm bandit setting
with K arms characterized by a distribution νi in [0, 1].
Each distribution has a mean µi and variance σ2

i . The
bandit problem is defined over a finite horizon of n
rounds. We denote by Xi,s ∼ νi the s-th random sam-
ple drawn from the distribution of arm i. All arms
and samples are independent. In the multi–arm ban-
dit protocol, at each round t, an algorithm selects an
arm It and observes a sample XIt,Ti,t , where Ti,t is the
number of samples observed from arm i up to time t
(i.e., Ti,t =

∑t
s=1 I{It = i}). While in the standard

multi–armed bandits literature the objective is to se-
lect the arm which leads to the highest reward in ex-
pectation, here we focus on the problem of finding the
arm which effectively trades off between its expected
reward (i.e., the return) and its variability (i.e., the
risk). Although a large number of models for return–
risk trade–off have been proposed, here we focus on
the most popular and simple model: the single period
mean–variance model proposed by Markowitz (1952).
In this model, the return is measured by the expected
reward and the risk by the variance.

Definition 1. The mean–variance of an arm i with
mean µi, variance σ2

i and coefficient of absolute risk
tolerance ρ is defined as2 MVi = σ2

i − ρµi.

Thus it easily follows that the best arm minimizes the
mean–variance, that is i∗ = arg mini=1,...,K MVi. We
notice that we can obtain two extreme settings de-
pending on the value of risk tolerance ρ. As ρ → ∞,
the mean–variance of arm i tends to the opposite of
its expected value µi and the problem reduces to the
standard expected reward maximization traditionally
considered in multi–arm bandit problems. With ρ = 0,
the mean–variance reduces to minimizing the variance
σ2
i and the objective becomes variance minimization.

We now consider a learning algorithm A and its cor-
responding performance over n rounds. We define the
empirical mean–variance of A as

M̂Vn(A) = σ̂2
n(A)− ρµ̂n(A), (1)

where

µ̂n(A) =
1

n

n∑
t=1

Zt, σ̂2
n(A) =

1

n

n∑
t=1

(
Zt − µ̂n(A)

)2
,

with Zt = XIt,Ti,t
, that is the reward collected by the

algorithm at time t. This leads to a natural defini-
tion of the (random) regret at each single run of the

2The coefficient of risk tolerance is the inverse of the
more popular coefficient of risk aversion A = 1/ρ.

algorithm as the difference in the mean–variance per-
formance of the algorithm compared to the best arm.

Definition 2. The regret for a learning algorithm A
over n rounds is defined as

Rn(A) = M̂Vn(A)− M̂Vi∗,n. (2)

Given this definition, the objective is to design an algo-
rithm whose regret decreases as the number of rounds
increases (in high probability or in expectation). In
order to have a better understanding of the elements
composing the regret, we introduce a definition of the
pseudo-regret.

Definition 3. The pseudo regret for a learning algo-
rithm A over n rounds is defined as

R̃n(A) =
1

n

∑
i 6=i∗

Ti,n∆i +
2

n2

K∑
i=1

∑
j 6=i

Ti,nTj,nΓ2
i,j , (3)

where ∆i = MVi −MVi∗ and Γi,j = µi − µj.

In the following we will denote by R̃∆
n and R̃Γ

n the first
and second term of the pseudo–regret respectively. It
can be easily shown that the pseudo–regret is close to
the regret Rn(A).

Lemma 1. Given definitions 2 and 3,

Rn(A) ≤ R̃n(A) + (5 + ρ)

√
2K log 1/δ

n
+ 4
√

2
K log 1/δ

n
,

with probability at least 1− 6nKδ.

On closer inspection, the definition of regret for A re-
veals that it can be determined by two different char-
acteristics of the algorithm. Similar to the mean case
(τ = ∞), an algorithm A suffers a regret whenever a
suboptimal arm i 6= i∗ is pulled and the regret cor-
responds to the difference in the mean–variance of i
w.r.t. the optimal arm i∗ (the gap ∆i). Nonetheless,
the variance of an algorithm A is not only due to the
variance of the arms actually pulled by A but also on
how different they are (see the Γi,j term). In particu-
lar, we notice that this also has a strong relationship
to the number of pulls Ti,n. In fact, if the algorithm
consistently pulls any single arm, then it would only
suffer from the regret of the arm but the second term
in the regret would be zero. On the other hand, if a
learning algorithm repeatedly explores different arms
then it may suffer an additional “exploration” regret.

3. The Mean–Variance
Confidence–Bound Algorithm
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Input: Confidence δ
for t = 1, . . . , n do

for i = 1, . . . ,K do

Compute Bi,Ti,t−1 = M̂Vi,Ti,t−1−(5+ρ)
√

log 1/δ
2Ti,t−1

end for
Return It = arg mini=1,...,K Bi,Ti,t−1

Update Ti,t = Ti,t−1 + 1
Observe XIt,Ti,t ∼ νIt

Update M̂Vi,Ti,t

end for

Figure 1. Pseudo-code of the MV-LCB algorithm.

Inspired by UCB, we introduce the index–based bandit
algorithm reported in Figure 1. For each arm, the
algorithm keeps track of the empirical mean–variance
computed according to the samples observed so far. In
particular, we define

µ̂i,s =
1

s

s∑
s′=1

Xi,s′ and σ̂2
i,s =

1

s

s∑
s′=1

X2
i,s′ − µ̂2

i,s, (4)

as the empirical mean and variance computed on s
observations. Thus, at the beginning of each round
t, we define the empirical mean–variance of arm i as
M̂Vi,Ti,t−1 = σ̂2

i,Ti,t−1
− τ µ̂i,Ti,t−1 . For both the terms

in the empirical mean–variance we can build high–
probability confidence bounds as an immediate appli-
cation of Chernoff–Hoeffding inequality (see e.g., An-
tos et al. (2010) for the bound on the variance). The
algorithm in Figure 1 implements the popular princi-
ple of optimism in face of uncertainty used in most of
the multi–arm bandit algorithms. Thus, we define a
lower–confidence bound on the mean–variance of arm
i at time t when it has been pulled s times so far as

Bi,s = M̂Vi,s − (5 + ρ)

√
log 1/δ

2s
, (5)

Given the index of each arm, at each round t the algo-
rithm simply selects the arm with the smallest mean–
variance index, i.e., It = arg miniBi,s. We refer to
this algorithm as the mean–variance lower–confidence
bound (MV-LCB) algorithm.

Remark 1. We notice that the algorithm reduces
to UCB1 (Auer et al., 2002) whenever τ = ∞. This
is coherent with the fact that when τ = ∞ the
mean–variance problem reduces to the maximization
of the cumulative reward, for which UCB1 is already
known to be nearly-optimal. On the other hand, for
τ = 0, which leads to the problem of cumulative re-
ward variance minimization, the algorithm is a lower–
confidence–bound algorithm on the variance.

In the following we report a theoretical analysis for the
expected pseudo–regret. Similar results hold in high–
probability and for the true regret Rn(A) as well.

Theorem 1. Let the optimal arm i∗ be unique and
b = 2(5 + ρ), if MV-LCB is run with δ = 1/n2 then

E[R̃n(A)] ≤ 2b2 log n

n

(∑
i 6=i∗

1

∆i
+ 4

∑
i 6=i∗

Γ2
i∗,i

∆2
i

+
4b2 log n

n

∑
i6=i∗

∑
j 6=i
j 6=i∗

Γ2
i,j

∆2
i∆

2
j

)
+ (17 + 6ρ)

K

n
.

Remark 2 (the bound). Let ∆min = mini 6=i∗ ∆i

and Γmax = maxi |Γi|, then a rough simplification of
the previous bound leads to

E[R̃n(A)] ≤ O
( K

∆min

log n

n
+K2 Γ2

max

∆4
min

log2 n

n

)
.

First we notice that the regret decreases as
O(log2 n/n), implying that MV-LCB is a consistent
algorithm. As already highlighted in Definition 2, the
regret is mainly composed by two terms. The first
term is due to the difference in the mean–variance of
the best arm and the arms pulled by the algorithm,
while the second term denotes the additional variance
introduced by the exploration risk of pulling arms with
different means. In particular, it is interesting to note
that this additional term depends on the squared dif-
ference in the means of the arms Γ2

i,j . Thus, if all the
arms have the same mean, this term would be zero.

Remark 3 (worst–case analysis). We can fur-
ther study the result of Theorem 1 by considering the
worst–case performance of MV-LCB, that is the per-
formance when the distributions of the arms are cho-
sen so as to maximize the regret. In order to illustrate
our argument we consider the simple case of K = 2
arms, ρ = 0 (variance minimization), µ1 6= µ2, and
σ2

1 = σ2
2 = 0 (deterministic arms). 3 In this case we

have a variance gap ∆ = 0 and Γ2 > 0. According to
the definition of MV-LCB, the index Bi,s would simply

reduce to Bi,s =
√

log 1/δ
s , thus forcing the algorithm

to pull both arms uniformly (i.e., T1,n = T2,n = n/2
up to rounding effects). Since the arms have the same
variance, there is no direct regret in pulling either one
or the other. Nonetheless, the algorithm has an ad-
ditional variance due to the difference in the samples
drawn from distributions with different means. In this
case, the algorithm suffers a constant (true) regret

Rn(MV-LCB) = 0 +
T1,nT2,n

n2
Γ2 =

1

4
Γ2,

independent from the number of rounds n. This argu-
ment can be generalized to multiple arms and ρ 6= 0,

3Note that in this case (i.e., ∆ = 0), Theorem 1 does
not hold, since the optimal arm is not unique.
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Figure 2. Performance of MV-LCB in two different settings.

since it is always possible to design an environment
(i.e., a set of distributions) such that ∆min = 0 and
Γmax 6= 0. This result is not surprising. In fact,
two arms with the same mean–variance are likely to
produce similar observations, thus leading MV-LCB
to pull the two arms repeatedly over time, since the
algorithm is designed to try to discriminate between
similar arms. Although this behavior does not suf-
fer from any regret in pulling the “suboptimal” arm
(the two arms are equivalent), it does introduce an
additional variance, due to the difference in the means
of the arms (Γ 6= 0), which finally leads to a regret
the algorithm is not “aware” of. This argument sug-
gests that, for any n, it is always possible to design
an environment for which MV-LCB has a constant re-
gret. This is particularly interesting since it reveals
a gap between the mean–variance problem and the
standard expected regret minimization problem and
will be further investigated in the numerical simula-
tions presented in Section 4. In fact, in the latter case,
UCB is known to have a worst–case regret per round
of Ω(1/

√
n) (Audibert & Bubeck, 2010), while in the

worst case, MV-LCB suffers a constant regret.

4. Numerical Simulations

In this section we report numerical simulations aimed
at validating the main theoretical findings reported in
the previous sections. In the following graphs we study
the true regret Rn(A) averaged over 500 runs. We
consider the variance minimization problem (ρ = 0)
for K = 2 Gaussian arms with µ1 = 1.0, µ2 = 0.5,
σ2

1 = 0.05, and σ2
2 = 0.25 and we run MV-LCB. In

the first plot of Figure 2 we report the true regret
Rn and the two components due to the pull of sub-
optimal arm and the “exploration risk” (R∆

n and RΓ
n

respectively). As expected (see e.g., Theorem 1), the
regret tends to zero as n increases and it is obtained
as the composition of the regret from pulling subop-
timal arms and the regret of pulling arms with differ-
ent means (Exploration Risk). Indeed, if we consid-
ered two distributions with µ1 = µ2, the average re-

gret would coincide with R∆̂
n . Furthermore, as shown

in Theorem 1 the two regret terms decrease with the
same rate O(log n/n). In the second plot of Figure 2
we report the study of the worst–case performance of
MV-LCB for the configuration suggested in Remark
3. Indeed, as discussed in the remark, in this case the
regret of MV-LCB does not decrease over time but sta-
bilizes to a constant, confirming that in the worst–case
MV-LCB can have a very poor performance.

5. Open Problems and Extensions

Lower bound. The previous results suggest that
a confidence–bound algorithm trying to minimize the
number of suboptimal pulls might have a large “risk”
and suffer a constant regret in the worst–case. It is an
open problem to understand to which extent it is actu-
ally possible to achieve an effective trade–off between
the number of pulls on the suboptimal arm and the
variability of the algorithm. For this reason, it would
be important to derive a distribution–free lower bound
for the general mean–variance problem.
Different measures of return–risk. In economics,
the mean–variance model has often been criticized.
In fact, in expected utility theory, the mean–variance
model is justified only under a Gaussian assumption on
the distribution of the arms, and the use of one–sided
deviations from the expected return are preferable to
symmetric measures of risk like the variance (e.g., in
finance only losses w.r.t. to the expected return are
considered as a risk, while any positive deviation is not
considered as a real risk). A popular measure of risk–
return is the α value–at–risk (i.e., the quantile). Tech-
nically speaking, the main challenge in this case is the
estimation of the value–at–risk of each arm. In fact,
while the cumulative distribution of random variable
can be reliably estimated (see e.g., (Massart, 1990)),
the quantile is much more difficult, in particular when
the level α corresponds to values where the probabil-
ity density is close to zero (e.g., a 0.95 quantile for a
Gaussian distribution). Thus, unlike the standard case
where we consider either bounded or sub-gaussian dis-
tribution, in this case it would be preferable to deal
with distributions with fat tails.
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